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During the last decade, the geometric aspects of freeform architecture have defined a field
of applications which is systematically explored and which conversely serves as inspiration
for new mathematical research. This paper discusses topics relevant to the realization of
freeform skins by various means (flat and curved panels, straight and curved members,
masonry, etc.) and illuminates the interrelations of those questions with theory, in particular
discrete differential geometry and discrete conformal geometry.

1 Introduction

A substantial part of mathematics is inspired by problems which originate outside the field.
In this paper we deal with outside inspiration from a rather unlikely source, namely archi-
tecture. We are not interested in the more obvious ways mathematics is employed in today’s
ambitious freeform architecture (see Figure 1) which include finite element analysis and tools
for computer-aided design. Rather, our topic is the unexpected interplay of geometry with the
spatial decomposition of freeform architecture into beams, panels, bricks and other physical
and virtual building blocks. As it turns out, the mathematical questions which arise in this con-
text proved very attractive, and the mundane objects of building construction apparently are
connected to several well-developed mathematical theories, in particular discrete differential
geometry.

The design dilemma. Architecture as a field of applications has some aspects different from
most of applied mathematics. Usually having a unique solution to a problem is considered a
satisfactory result. This is not the case here, because architectural design is art, and something
as deterministic as a unique mathematical solution of a problem eliminates design freedom
from the creative process. We are going to illustrate this dilemma by means of a recent project
on the Eiffel tower.

The interplay of disciplines. We demonstrate the interaction between mathematics and appli-
cations at hand of questions which occur in practice and their answers. We demonstrate how
a question Q, phrased in terms of engineering and architecture, is transformed into a specific
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Figure 1. Freeform architecture. The Yas Marina Hotel in Abu Dhabi illustrates the decomposition
of a smooth skin into straight elements which are arranged in the manner of a torsion-free support
structure. The practical implication of this geometric term is easy manufacturing of nodes (image
courtesy Waagner-Biro Stahlbau).

mathematical question Q∗ which has an answer A∗ in mathematical terms. This information
is translated back into an answer A to the original question. Simplified examples of this proce-
dure are the following:

Q1: Can we realize a given freeform skin as a steel-glass construction with straight beams and
flat quadrilateral panels?

Q∗1 : Can a given surface Φ be approximated by a discrete- conjugate surface?
A∗1 : Yes, but edges have to follow a conjugate curve network of Φ.
A1: Yes, but the beams (up to their spacing) are determined by the given skin.

Q2: For a steel-glass construction with triangular panels, can we move the nodes within the
given reference surface, such that angles become ≈ 60◦?

Q∗2 : Is there a conformal triangulation of a surface Φ which is combinatorially equivalent to a
given triangulation (V , E, F)?

A∗2 : Yes if the combinatorial conformal class of (V , E, F) matches the geometric conformal
class of Φ.

A2: Yes if the surface does not have topological features like holes or handles.

Overview of the paper. We start in Section 2 with freeform skins with straight members and
flat panels, leading to the discrete differential geometry of polyhedral surfaces. Section 3 deals
with curved elements, Section 4 with circle patterns and conformal mappings, Section 5 with
the statics of masonry shells, and finally Section 6 discusses computational tools.

2 Freeform skins with flat panels and straight beams

Freeform skins realized as steel-glass constructions are usually made with straight members
and flat panels because of the high cost of curved elements. Often, the flat panels form a water-
tight skin. Since three points in space always lie in a common plane, but four generic points do
not, it is obviously much easier to use triangular panels instead of quadrilaterals. Despite this
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Figure 2. Steel-glass constructions following a triangle mesh can easily model the desired shape of
a freeform skin, at the cost of high complexity in the nodes. The Złote Tarasy roof in Warszaw (left)
is welded from straight pieces and spider-like node connectors which have been plasma-cut from a
thick plate (images courtesy Waagner-Biro Stahlbau).

difficulty, the past decade has seen much research in the geometry of freeform skins based
on quadrilateral panels. This is because they have distinct advantages over triangular ones
– fewer members per node, fewer members per unit of surface area, fewer parts and lighter
construction (see Figure 2).

2.1 Meshes
We introduce a bit of terminology: A triangle mesh is a union of triangles which form a surface,
and we imagine that the edges of triangles guide the members of a steel-glass construction. The
triangular faces serve as glass panels. Similarly, quad meshes are defined, as well as general
meshes without any restrictions on the valence of faces. We use the term planar quad mesh to
emphasize that panels are flat. Dropping the requirement of planarity of faces leads to general
meshes whose edges are still straight. We use V for the set of vertices, E for the edges, and F
for the faces. The exact definition of “mesh” follows below.

Meshes from the mathematical viewpoint. While a triangle mesh is simply a 2D simplicial com-
plex of manifold topology, a general mesh is defined as follows. This definition is engineered
to allow certain degeneracies, e.g. coinciding vertices.

Definition 1. A mesh in Rd consists of a two-dimensional polygonal complex (V , E, F) with
vertex set V , edge set E, and face set F homeomorphic to a surface with boundary. In addition,
each vertex i ∈ V is assigned a position vi ∈ Rd and each edge ij ∈ E is assigned a straight line
eij such that vi, vj ∈ eij.

We say the mesh is a polyhedral surface if it has planar faces, i.e., for each face there is a
plane which contains all vertices vi incident with that face.

2.2 Support structures
An important concept are the so-called torsion-free support structures associated with meshes
[30]. Figure 3 shows an example, namely an arrangement of flat quadrilateral panels along the
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Figure 3. Physical torsion-free support structures. The roof of the Robert and Arlene Kogod Courtyard
in the Smithsonian American Art Museum exhibits a mesh with quadrilateral faces and an associated
support structure. The faces of the mesh are not planar – only the view from outside reveals that the
planar glass panels which function as a roof do not fit together.

edges of a quad mesh (V , E, F) (which does not have planar faces), such that whenever four
edges meet in a vertex, the four auxiliary quads meet in a straight line. We define:

Definition 2. A torsion-free support structure associated with a mesh (V , E, F) consists of as-
signments of a straight line `i to each vertex and a plane πij to each edge, such that `i 3 vi for
all vertices i ∈ V , and πij ⊃ `i, `j , eij for all edges ij ∈ E.

A support structure provides actual support in terms of statics (whence the name), but also has
other functions like shading [43]. In discrete differential geometry, support structures occur
under the name “line congruences”.

Benefits of virtual support structures. Figures 1 and 4 illustrate the Yas Marina Hotel in Abu
Dhabi, which carries a support structure in a less physical manner: each steel beam has a
plane of central symmetry, and for each node these planes intersect in a common node axis,
guaranteeing a clean “torsion-free” intersection of beams. This is much better than the complex
intersections illustrated by Figure 2.

Combining flat panels and support structures. It would be very desirable from the engineering
viewpoint to work with meshes which have both flat faces and torsion-free support structures.
They would be able to guide a watertight steel-glass skin and allow for a “torsion-free” intersec-
tion of members in nodes such as demonstrated by Figure 4. The following elementary result
however says that in order to achieve this, we must essentially do without triangle meshes.

Lemma 3. Every mesh can be equipped with trivial support structures where all lines `i and
planes πij pass through a fixed point (possibly at infinity).

Triangle meshes admit only trivial support structures. More precisely this property is enjoyed
by every cluster of generic triangular faces which is iteratively grown from a triangular face by
adding neighbouring faces which share an edge.

Proof. For an edge ij, there exists the point xij = `i ∩ `j (possibly at infinity), because `i, `j
lie in the common plane πij. If ijk is a face, then xij = `i ∩ `j = (πik ∩ πjk) ∩ (πij ∩ πjk) =
πij∩πik∩πjk implying that xij = xik = xjk =⇒ all axes incident with the face ijk pass through
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Figure 4. Torsion-free support structure. For each edge ij and vertex i of a quadrilateral mesh, we
have a plane πij and a line `i such that eij, `i, `j are contained in πij (at left, image courtesy Evolute).
This support structure guides members and nodes in the outer hull of the Yas Marina hotel in Abu
Dhabi, so that members have a nice intersection in each node (at right, image courtesy Waagner-Biro
Stahlbau).

a common point. For faces sharing an edge that point obviously is the same, which proves the
statement.

Lemma 3 has far-reaching consequences since it expresses the incompatibility of two very
desirable properties of freeform architectural designs. On the one hand frequently a freeform
skin is to be watertight, acting as a roof, which for financial reasons imposes the constraint of
planar faces. Unfortunately the planarity constraint is difficult to satisfy unless triangular faces
are employed. On the other hand, triangle meshes have disadvantages: We already mentioned
the large number of members. Lemma 3 states that only in special circumstances it is possible
to reduce node complexity by aligning beams with the planes of a support structure.

2.3 Quadrilateral meshes with flat faces
Research related to meshes with planar faces is not new, as proved by the 1970 textbook [33]
on difference geometry by R. Sauer which in particular summarizes earlier work starting in
the 1930’s. That work was pioneering for discrete differential geometry, which meanwhile is a
highly developed area [11]. Relevant to the present survey, questions concerning quad meshes
with planar faces ten years ago marked the starting point of a line of research motivated by
problems in engineering and architecture [26], which again led to new developments in discrete
differential geometry, see Section 2.4 below.

The meaning of “freeform”. Research on quad meshes with flat faces has been rewarding
mathematically, but unfortunately hardly any truly freeform meshes of that type have been
realized as buildings. Their welcome qualities have nevertheless been used for impressive
architecture, but meshes built so far enjoy special geometric properties (like rotational sym-
metry) which allows us to describe their shape using much less information than would be
required in general, see Figure 5.

Smoothness limiting design freedom. A typical situation in the design process of freeform ar-
chitecture is the following: A certain mesh has been created whose visual appearance fits the



136 HELMUT POTTMANN AND JOHANNES WALLNER

Figure 5. Not entirely freeform surfaces. Left: The hippo house in the Berlin zoo is based on a
quadrilateral mesh with flat faces, but is not freeform in the strict sense. Its faces are parallelograms,
so the mesh is generated by parallel translation of one polyline along another one. Mathematically,
vertices vi,j have the form vi,j = ai + bj .
Right: the Sage Gateshead building on the river Tyne, UK, is based on a sequence of polylines which
are scaled images of each other, similar to a mesh with rotational symmetry.

Figure 6. Quad meshes. Left: The canopy at “Tokyo Midtown” is based on a quad mesh with planar
faces. Center : This quad mesh has nonplanar faces, and all meshes nearby which have planar faces are
far from smooth. Right: This mesh has planar faces and is no direct discrete analogue of a continuous
smooth surface parametrization (for such regular patterns see [24]).

intentions of the designer and which eventually is to be realized as a steel-glass construction
with flat panels. The designer therefore wants the vertex positions to be altered a little bit so
that the faces of the mesh become planar, but its visual appearance does not change. Unfortu-
nately this problem is typically not solvable. This is not because the nonlinear nature of this
problem prevents a numerical solution – the reasons are deeper and of a more fundamental,
geometric nature: For example, it is known that a “smooth” mesh of regular quad combina-
torics which follows a smooth surface parametrization can have planar faces only if its edges
are aligned with a so-called conjugate curve network of the reference surface. The network of
principal curvature lines is the major example of that, cf. Figure 8. Since its singularities are
shared (in a way) by all conjugate curve networks [45], the principal curvature lines already
give a good impression of what a planar quad mesh approximating a given surface must look
like. If the designer’s mesh is not conjugate, there is no smooth mesh nearby which has planar
faces – see Figure 6. There is no easy way out of this dilemma other than reverting to triangular
faces, or redesigning the mesh entirely so that its edges follow a conjugate curve network, or
forgoing smoothness.
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