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Since ancient times, the development of mathematics has been inspired, at least in part, by
the need to provide models in other sciences, and that of describing and understanding the
world around us. In this note, we concentrate on the shapes of nature and introduce two
related geometries that play an important role in contemporary science. Fractal geometry
allows describing a wide range of shapes in nature. In 1973, Harry Blum introduced a new
geometry well suited to describe animal morphology.

The range of shapes and patterns in nature is immense. At the larger scale, we can think of
the spiral shapes of galaxies, which resemble those of some hurricanes. There are many other
shapes on Earth, from mountains to dunes, to oceans, to clouds, and to networks of rivers.
Coming to still smaller scales, we observe the many shapes of life, be it vegetation or animals.
At still smaller scales, we explore the complexity of the capillary network and bronchial tubes
in the lungs. We discover common features: for instance, the capillary network resembles a
river network. Can we measure these resemblances? Can we explain how these complicated
shapes are produced and why some similarities of shapes occur in many different situations?

Traditional geometry uses lines, circles, smooth curves and surfaces to describe nature. This
is sufficient to describe remarkable shapes like the logarithmic spiral of a nautilus, or the spiral
shapes of hurricanes and galaxies, and to explain why they occur. If we want to describe the
DNA strands, then the help of knot theory is welcome since the DNA strands are so long that
they require entanglement to be packed in the cell. The traditional geometry is not sufficient to
describe the shapes of many plants like trees, ferns, the Romanesco cauliflower, or the branch
of parsley. We need a geometry to describe the plants. This geometry is the fractal geometry,
created by the visionary mathematician, Benoît Mandelbrot (see for instance [5]).

1 Fractal geometry

The fern, the Romanesco califlower, or the branch of parsley are very complicated objects.
Well, they look very complicated if we observe them through our eyes . . . Hence, let us put on
mathematical glasses and discover their hidden simplicity: they are self-similar (Figure 1). This
means that if we zoom to some part of an object, then we see the same pattern reappearing at
different scales. In practice, this self-similarity means that the object looks complicated just
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a The fern b A branch of parsley

Figure 1. A fern and a branch of parsley

because we do not look at it from the right point of view. And indeed, self-similar objects can
be reconstructed with extremely simple programs if we make use of their self-similar structure
(see, for instance, [6] or [8]).

Mathematicians like to focus on simpler models. Hence, we will concentrate on the Sierpiński
carpet (see Figure 2a) which is obtained from a plain triangle, deleting the middle triangle, and
iterating. We already face a surprise. The Sierpiński carpet is really an object created from
the imagination of mathematicians. Well, nature seemed to have borrowed this pattern on
Cymbiola Innexa REEVE (see Figure 2b)! And if you look at the computer generated pattern in
Figure 2c, it is very similar to the pattern on the shell! We will come back to this pattern later.
When introducing fractal geometry to describe the shape of plants, we have done much better.
This new geometry can also be used to describe many more shapes of nature including rocky

a Sierpiński carpet b Cymbiola Innexa REEVE c computer generated pattern

Figure 2. The Sierpiński carpet, the shell Cymbiola Innexa REEVE (Photo credit: Ian Holden, Schooner
Specimen Shells), and a computer generated pattern
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coasts, the river networks or the patterns drawn by water flowing on the sand, the deltas of
large rivers like Niger, clusters of galaxies or the Milky Way, clouds, frost, the bronchial tubes
or the network of capillaries, etc.

We want to understand the geometry of these objects and what characterizes them.

1.1 Measuring a fractal
How can we measure the length of a rocky coast? This seems a difficult operation. Indeed, each
time we zoom, we see new details appearing, thus adding to the length. Hence, when do we
stop zooming?

Again, as mathematicians, we will first study a simple model. This model is the von Koch
snowflake (see Figure 3a). Is is obtained by iteration, i.e., by repeating the same step(s) again
and again. At each step of the iteration, we replace each segment by a group of 4 segments
with length equal to 1/3 of the length of the original segment. If L is the length of the original
triangle in Figure 3b, then 4

3L is the length of the star of Figure 3c,
( 4

3

)2L is the length of the
object in Figure 3d, etc. In particular, this means that at each step the length is multiplied by
4
3 . Since there are an infinite number of steps in the construction, then the length of the von
Koch snowflake is infinite even though the curve fits into a finite region of the plane!

As an exercise, you could play the same kind of game and check that the area of the Sier-
piński carpet is zero.

We have seen that a curve can have an infinite length even when it lies in a finite region of
the plane. In the same way, there exists fractal surfaces with infinitely many peaks that have
infinite area and fit in a finite volume. Such properties are useful for nature. For instance, while
the outer surface of the small intestine has an approximate area of 0.5 m2, the inner surface
has an approximate area of 300 m2. The fractal nature of the inner surface allows its large area
and favors the intestinal absorption.

The examples above show that length and area give little information on a fractal. The con-
cept which will allow to give more relevant information is that of dimension.

1.2 Dimension of a fractal object
How do we mathematically define dimension? We have an intuitive idea of dimension. Indeed,
smooth curves are of dimension 1, smooth surfaces, of dimension 2, and filled volumes, of

a von Koch snowflake b Initial triangle c First iterate d Second iterate

Figure 3. Von Koch snowflake and the iteration process to construct it
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a b

Figure 4. Calculating the dimension of a curve using squares of different sizes

dimension 3. Hence, we should give a mathematical definition of dimension, which yields 1
for smooth curves, 2, for smooth surfaces, and 3, for filled volumes. In the context of this
paper, we will limit ourselves to dimensions 1 and 2. We want to cover an object in the plane
with small squares. (If we would want to define dimension 3 we would use small cubes, but we
could have used small cubes for curves and surfaces without changing the dimension!)

Case of a smooth curve. (see Figure 4)

If we take squares with side of half size, then we approximately double the number of
squares needed to cover the object.
If we take squares with side one third of the size, then we approximately triple the number
of squares needed to cover the object.
. . .
If we take squares with side n times smaller, then we approximately need n times more
squares to cover the object.

Case of a surface. (see Figure 5)

If we take squares with side of half size, then we approximately need four times more
squares to cover the object.
If we take squares with side one third of the size, then we approximately need nine times
more squares to cover the object.

a b

Figure 5. Calculating the dimension of a surface using squares of different sizes
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. . .
If we take squares with side n times smaller, then we approximately need n2 times more
squares to cover the object.

We can now give the (intuitive) definition of dimension.

Definition. An object has dimension d if, when we take squares (or cubes) with edge n times
smaller to cover it, then we need approximately nd more squares (or cubes) to cover it.

Not all objects have a dimension. But, the self-similar objects have a dimension which, most
often, is not an integer. We assert without proof that the fractal dimension of the von Koch
snowflake is ln 4

ln 3 ∼ 1.26. Let us now calculate the dimension of the Sierpiński carpet (see
Figure 6).

Let us take a square with side equal to the length of the base (see Figure 6b). It covers the
Sierpiński carpet of Figure 6a.
If we take squares with side of half size, then we need three squares to cover the Sierpiński

carpet. Note that 3 = 2
ln 3
ln 2 (Figure 6c).

if we take squares with side one fourth of the size, then we need nine squares to cover the

Sierpiński carpet. Note that 9 = 4
ln 3
ln 2 (Figure 6d).

If we take squares with side one eight of the size, then we need 27 squares to cover the

Sierpiński carpet. Note that 27 = 8
ln 3
ln 2 (Figure 6e).

Hence, it is easy to conclude that the dimension of the Sierpiński carpet of Figure 6a is
d = ln 3

ln 2 ∼ 1.585. We assert without proof that it is also the dimension of the Sierpiński carpet
of Figure 2, even if that is not as obvious (see for instance [7]).

The dimension gives a “measure” of the complexity or density of a fractal. We feel that the
Sierpiński carpet is denser than the von Koch snowflake, which looks more like a thickened

a
Sierpiński carpet

b 1 c 3 d 9

e 27

Figure 6. Number of squares to cover to cover the Sierpiński carpet appearing in a
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curve. This is reflected by the fact that ln 3
ln 2 >

ln 4
ln 3 , i.e., the dimension of the Sierpiński carpet is

larger than the dimension of the von Koch snowflake.

1.3 Applications
There are many applications in a wide range of disciplines. Let us mention two in medicine.

The capillary network is not the same in the neighborhood of a tumor as elsewhere in the
body. Research is carried on this, and in particular on its fractal dimension, in order to improve
diagnosis from medical imaging.

High level athletes are more likely to suffer from asthma than the general population. The
paper [3] studies the “optimal lung”. There are 17 level of bronchial tubes before arriving to
the terminal bronchioles followed by the acini involved in air exchange. If the bronchial tubes
are too thin, then the pressure increases too much when the air penetrates in the next level
of bronchial tubes. But if they are too wide, so that the volume never decreases from one
level to the next, then the volume becomes too large. (It would become infinite if we had an
infinite number of levels). Hence, the “optimal lung” would have the minimum volume without
increasing the pressure. But the rate of variation of pressure close to the optimal lung is quite
high, which means that a slight decrease in the diameter of the bronchial tubes induces a
substantial increase of the pressure. To overcome this, the human lungs have a higher volume
than the theoretical optimal lungs. This buffer provides a safety factor to protect in case of
a pathology decreasing the diameter of the bronchial tubes, like asthma. Athletes have lungs
generally closer to the theoretical optimal lungs, and hence, are more vulnerable.

1.4 Coming back to Cymbiola Innexa REEVE
How do we generate the pattern of Figure 2(c)? The scientists work on the hypothesis that a
model of reaction-diffusion generates the pattern. The shell grows from its lower boundary, so
the pattern should expand on the bottom side. We have two chemical reactants:

one activator (colored),
one inhibitor (uncolored).

The two reactants diffuse. The pattern is sensitive to initial conditions. We can obtain many
patterns by varying the initial conditions. The diffusion starts from the top and goes to the
bottom, when a new stripe is added on the side of the shell.

Let us present a simplification of the model. We approximate each layer by small squares
(pixels). How is determined the color of a pixel? It depends on the color of the two pixels on
the level just above, which are adjacent to it by the corner. If the adjacent two pixels are of the
same type (both activators or inhibitors), then this generates a pixel with activator (colored).
If the adjacent two pixels are of different types (one activator and one inhibitor), then this
generates a pixel with inhibitor (uncolored).

This is how we write it mathematically. Activator (or color) is denoted by 1 and inhibitor by
0. The pattern is created following the three rules

0+ 0 = 0,
1+ 0 = 0+ 1 = 1,
1+ 1 = 0,

(1)
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